[1]尧海昌,柴博周.面向轨道交通集群调度系统的数据分片中间件的研究[J].南京工业职业技术学院学报,2018,(2):9-14.
 YAO Hai-chang,CHAI Bo-zhou.Research on Data Partition Middleware of Rail Transit Cluster Dispatching System[J].,2018,(2):9-14.
点击复制

面向轨道交通集群调度系统的数据分片中间件的研究()
分享到:

《南京工业职业技术学院学报》[ISSN:1671-4644/CN:32-1635/Z]

卷:
期数:
2018年第2期
页码:
9-14
栏目:
信息技术与应用
出版日期:
2018-06-28

文章信息/Info

Title:
Research on Data Partition Middleware of Rail Transit Cluster Dispatching System
作者:
尧海昌12 柴博周2
1. 南京工业职业技术学院 计算机与软件学院, 江苏 南京 210023;
2. 南京邮电大学 计算机学院, 江苏 南京 210023
Author(s):
YAO Hai-chang12 CHAI Bo-zhou2
1. Nanjing Institute of Industry Technology, Nanjing 210023, China;
2. Nanjing University of Posts and Telecommunications, Nanjing 210023, China
关键词:
数据库离散分片连续分片轨道交通集群
Keywords:
databasediscrete partitioncontinuous partitionrail transit cluster
分类号:
TP311.1
摘要:
在分析现有的数据分片中间件的基础上设计了一种面向轨道交通集群调度系统的数据分片中间件,该中间件采用离散与连续结合的数据分片策略,在保证数据查询效率的同时,避免了离散分片方式数据库扩容所带来的数据迁移问题和连续分片方式新数据集中读写所带来的数据热点问题。
Abstract:
This paper, on the basis of analyzing the existing data partition middleware, designes a data partition middleware for the rail traffic cluster scheduling system. The middleware uses the discrete and continuous data partitioning strategy, which ensures the efficiency of data query and at the same time avoids the data migration of the discrete piecewise square database expansion and data hot problems of reading and writing in new data sets brought by continuous partition.

参考文献/References:

[1] 季一木, 柴博周, 杨罗坤, 等. 基于TD-LTE的轨道交通集群调度系统[J]. 计算机工程, 2017(6):296-300.
[2] Lai Y C, Ip C S. An integrated framework for assessing service efficiency and stability of rail transit systems[J]. Transportation Research Part C:Emerging Technologies, 2017(79):18-41.
[3] Caspi R, Billington R, Fulcher C A, et al. The MetaCyc database of metabolic pathways and enzymes[J]. Nucleic Acids Research, 2017(2):231-241.
[4] Dong X, Li X. A Novel Distributed Database Solution Based on MySQL[C]. IEEE International Conference on Information Technology in Medicine and Education,2016:329-333.
[5] Wee C K, Nayak R. A Novel Database Exploitation Detection and Privilege Control System Using Data Mining[M]//Modern Approaches for Intelligent Information and Database Systems. Springer, Cham, 2018:505-516.
[6] Hulbert A, Kunicki T, Hughes J N, et al. An experimental study of big spatial data systems[C]. IEEE International Conference on Big Data,2017:2664-2671.
[7] Sun Y, Wang Y, Yang H. Bidirectional Database Storage and SQL Query Exploiting RRAM-Based Process-inMemory Structure[J]. ACM Transactions on Storage (TOS), 2018, 14(1):8.
[8] Wang Z, Wei Z, Liu H. Research on high availability architecture of SQL and NoSQL[C]//AIP Conference Proceedings. AIP Publishing, 2017, 1820(1):090021.
[9] Ye W, Wang M, Le J. Query Execution Optimization Based on Incremental Update in Database Distributed Middleware[C]//International Conference on Algorithms and Architectures for Parallel Processing. Springer, Cham, 2015:257-270.
[10] Vo H, Aji A, Wang F. SATO:a spatial data partitioning framework for scalable query processing[C]//Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2014:545-548.
[11] Blomstedt P, Tang J, Xiong J, et al. A Bayesian predictive model for clustering data of mixed discrete and continuous type[J]. IEEE transactions on pattern analysis and machine intelligence, 2015(3):489-498.
[12] 张鹏, 刘庆云, 熊翠文, 等. 基于内存的分布式隐私流查询系统[J]. 计算机研究与发展, 2014(2):1-9.
[13] Won J, Kang S, Jo S, et al. Distributed Processing System for Aggregate/Analytical Functions on CUBRID Shard Distributed Databases[J]. KⅡSE Transactions on Computing Practices, 2015(8):537-542.

相似文献/References:

[1]黄杰.基于教学的数控加工工艺数据库系统的研究与开发[J].南京工业职业技术学院学报,2012,(2):61.
 HUANG Jie.Research and Development of Database Systems of Teaching-based NC Machining Process[J].,2012,(2):61.

备注/Memo

备注/Memo:
收稿日期:2018-04-23。
作者简介:尧海昌(1988-),男,南京工业职业技术学院讲师,南京邮电大学2016级博士研究生,研究方向:大数据。
更新日期/Last Update: 1900-01-01