[1]吴国中,李镇,宋增禄.风电叶片在线检测技术研究进展[J].南京工业职业技术学院学报,2018,(2):4-8.
 WU Guo-zhong,LI Zhen,SONG Zeng-lu.Progress in Research of Online Detection Technology for Wind Blade[J].,2018,(2):4-8.
点击复制

风电叶片在线检测技术研究进展()
分享到:

《南京工业职业技术学院学报》[ISSN:1671-4644/CN:32-1635/Z]

卷:
期数:
2018年第2期
页码:
4-8
栏目:
机电技术与应用
出版日期:
2018-06-28

文章信息/Info

Title:
Progress in Research of Online Detection Technology for Wind Blade
作者:
吴国中 李镇 宋增禄
南京工业职业技术学院 电气工程学院, 江苏 南京 210023
Author(s):
WU Guo-zhong LI Zhen SONG Zeng-lu
Nanjing Institute of Industry Technology, Nanjing 210023, China
关键词:
风电叶片在线检测
Keywords:
wind powerturbine bladeonline detection
分类号:
TP273
摘要:
就风电设备运行过程中风机叶片的在线检测技术进行了讨论。叶片在线检测主要有两大类,分别是以应变、声发射等传感器检测为核心的侵入式检测和以图像检测为代表的非侵入检测,探讨了这两种检测模式中风电叶片损伤检测的实验手段以及损伤特征提取和识别的算法。
Abstract:
This paper discusses on-line detection technology for wind blade in the operation of wind power apparatus. There are mainly two types of onlinedetection mode:one is based on the sensors such as strain or acoustic emission, the other is non attached mode based on image detection. It also details the test method and algorithm for damage identification.

参考文献/References:

[1] Jorgensen E R, Borum K K, McGugan M, et al. Full Scale Testing of Wind Turbine Blade to Failure-Flapwise Loading Riso-R-1392(EN)Report Riso[R].Denmark: National Laboratory, 2004.
[2] Guo Z S, Zhang J, Hu H, et al. Structural Health Monitoring of Composite Wind Blades by Fiber Bragg Grating[J]. Proc. SPIE, 2007,6423:64230I.
[3] Rumsey M A,Paquette J A. Structural Health Monitoring of Wind Turbine Blades[J]. Proc. SPIE, 2008,6933: 69330E.
[4] 曲弋, 陈长征, 周昊, 等. 基于声发射和神经网络的风机叶片裂纹识别研究[J].机械设计与制造, 2012(3): 152-154.
[5] 周勃, 陈长征, 张宇, 等. 风力机叶片裂纹的动态扩展特性研究[J]. 中国机械工程, 2013, 24(8):1108-1113.
[6] 陈长征, 赵新光, 周勃, 等. 风电机组叶片裂纹故障特征提取方法[J]. 中国电机工程学报, 2013, 33(2):112-118.
[7] 周勃, 张士伟, 陈长征, 等. 风力机叶片多裂纹扩展声发射信号的特征识别[J]. 仪器仪表学报, 2015, 36(1): 110-117.
[8] 刘胜先, 李录平, 余涛, 等. 基于振动检测的风力机叶片覆冰状态诊断技术[J]. 中国电机工程学报, 2013, 33(32):88-95.
[9] H ckell M W, Rolfes R. Monitoring a 5 MW Offshore Wind Energy Converter-condition Parameters and Triangulation Based Extraction of Modal Parameters[J]. Mech. Syst. Signal Process, 2013, 40:322-43.
[10] 乌建中, 陶益. 基于短时傅里叶变换的风机叶片裂纹损伤检测[J]. 中国工程机械学报, 2014, 12(2):180-183.
[11] Kirikera G R, Shinde V, Schulz M J, et al. Monitoring Multi-site Damage Growth During Quasi-static Testing of a Wind Turbine Blade Using a Structural Neural System Struck[J]. Health Monit. 2008, 7:157-73.
[12] Ghoshal A, Sundaresan M J, Schulz M J, et al. Structural Health Monitoring Techniques for Wind Turbine Blades[J]. Wind Eng. Ind. Aerodyn, 2000, 85:309-24.
[13] He Lihan, Qiu Hai, Fu Xu, et al. Camera-Based Portable System for Wind Turbine Blade Tip Clearance Measurement[J]. IEEE International Conference on Imaging System & Techniques, 2014:451-456
[14] GE Reports. Go Go Gadget:Robotic Crawler Rides up 300-foot Poles to Inspect Wind Turbine Blades[EB/OL].[2012-06-12].http://www.gereports.com/go-go-gadget.
[15] Wang Long. Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-Taken Images[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7293-7302.
[16] Zhang Huiyi, John Jackman. A feasibility Study of Wind Turbine Blade Surface Crack Detection Using an Optical Inspection Method[M]//International Conference on Renewable Energy Research and Applications Madrid. Spain, 2013, 847.
[17] 翟永杰, 张木柳, 乔弘, 等. 基于显著性检测的风机叶片裂纹提取研究[J]. 南方能源建设, 2016, 3(2):136-140.
[18] Zhai Yongjie, Zhang Muliu, Qiao Hong, WANG Di.Research on Extraction of Fan Blade Crack Based on Salient Region Detection[J]. IEEE Transactions on Smart Grid, 2016, 99:1.

备注/Memo

备注/Memo:
收稿日期:2018-04-23。
基金项目:江苏风力发电工程技术中心2016年度开放基金(编号:ZK16-03-05);江苏省品牌专业资助项目(编号:PPZY2015B189)
作者简介:吴国中(1974-),男,南京工业职业技术学院副教授,工学硕士,研究方向:自动化控制及检测技术。
更新日期/Last Update: 1900-01-01