[1]傅美欢.用超对称量子力学方法求三维氢原子势的精确解[J].南京工业职业技术学院学报,2017,(4):18-20.
 FU Mei-huan.The Exact Solution of Three-dimensional Hydrogen Atom Potential in Supersymmetric Quantum Mechanics[J].,2017,(4):18-20.
点击复制

用超对称量子力学方法求三维氢原子势的精确解()
分享到:

《南京工业职业技术学院学报》[ISSN:1671-4644/CN:32-1635/Z]

卷:
期数:
2017年第4期
页码:
18-20
栏目:
数理分析与应用
出版日期:
2017-12-28

文章信息/Info

Title:
The Exact Solution of Three-dimensional Hydrogen Atom Potential in Supersymmetric Quantum Mechanics
作者:
傅美欢
南京工业职业技术学院 基础课部, 江苏 南京 210023
Author(s):
FU Mei-huan
Nanjing Institute of Industry Technology, Nanjing 210023, China
关键词:
氢原子势超势形状不变性能级波函数
Keywords:
hydrogen atom potentialsuperpotentialshape invarianceenergy levelswave function.
分类号:
Q413
摘要:
通过定义超势而得到升降算符,从而把三维氢原子势的二阶Schrödinger方程分解为一阶的Ricatti方程,计算了三维氢原子的能级,再根据升降算符计算了三维氢原子的波函数。
Abstract:
Raising and lowering operators are obtained by defining the Superpotential, and two order Schrödinger equation of three dimensional hydrogen atom is factorized into one order differential equation(Ricatti equation). The energy levels of three-dimensional hydrogen atom are calculated. According to the raising and lowering operators, the wave functions of three-dimensional hydrogen atom are calculated.

参考文献/References:

[1] Schrödinger E. A method of determining quantummechanical eigenvalues and eigenfunctions[J]. Proc. R. Irish Acad. A, 1940,46:9-16.
[2] Witten E.Dynamical breaking of supersymmetry[J]. Nucl. Phys. B,1981, 188:513-554.
[3] Cooper F, Ginocchio J N,Khare A.Relationship between supersymmetry and solvable potential[J]. Phys. Rev. D, 1987,36:2458-2570.
[4] Gendenshtein L E. Derivation of exact spectra of the Schrödinger equation by means of supersymmetry[J]. JETP Lett.,1983,38:356-359.
[5] 曾谨言. 量子力学卷I(第三版)[M]. 北京:科学出版社, 2000:322.
[6] 刘登云. 因式分解法与形状不变势[J]. 大学物理, 1992(8):6-10.
[7] 傅美欢. 幂函数叠加势的形状不变性[J]. 大学物理, 2015(9):7-9.

备注/Memo

备注/Memo:
收稿日期:2017-11-05。
基金项目:江苏省2016年度高校哲学社会科学研究项目(编号:2016SJB910001)
作者简介:傅美欢(1966-),男,南京工业职业技术学院副教授,理学硕士,研究方向:理论物理。
更新日期/Last Update: 1900-01-01